Stellarium 0.15.2
testStelSphereGeometry.hpp
1 /*
2  * Stellarium
3  * Copyright (C) 2009 Fabien Chereau
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA.
18  */
19 
20 #ifndef _TESTSTELSPHERICALGEOMETRY_HPP_
21 #define _TESTSTELSPHERICALGEOMETRY_HPP_
22 
23 #include <QObject>
24 #include <QTest>
25 #include "StelSphereGeometry.hpp"
26 
27 class TestStelSphericalGeometry : public QObject
28 {
29 Q_OBJECT
30 private slots:
31  void initTestCase();
32  void testOctahedronPolygon();
33  void testSphericalCap();
34  void testContains();
35  void testPlaneIntersect2();
36  void testGreatCircleIntersection();
37  void testSphericalPolygon();
38  void testConsistency();
39  void testLoading();
40  void testEnlarge();
41  void benchmarkContains();
42  void benchmarkCheckValid();
43  void benchmarkSphericalCap();
44  void benchmarkGetIntersection();
45  void testSerialize();
46  void benchmarkCreatePolygon();
47 private:
48  SphericalPolygon holySquare;
49  SphericalPolygon bigSquare;
50  SphericalPolygon smallSquare;
51  SphericalPolygon opositeSquare;
52  SphericalConvexPolygon bigSquareConvex;
53  SphericalConvexPolygon smallSquareConvex;
54  SphericalConvexPolygon triangle;
55  SphericalPolygon northPoleSquare;
56  SphericalPolygon southPoleSquare;
57 };
58 
59 #endif // _TESTSTELSPHERICALGEOMETRY_HPP_
Class defining default implementations for some spherical geometry methods.
A special case of SphericalPolygon for which the polygon is convex.
Define all SphericalGeometry primitives as well as the SphericalRegionP type.